Projecting Diameter Growth in Tropical
Trees: A New Modeling Approach

Martin Ricker and Rafael del Rio

ABSTRACT. An important and heretofore unresolved challenge in forestry has been how
to project long-term tree growth (i.e., decades to hundreds of years) from short-term
measurements (here 1 year) for trees that do not present annual growth rings in their trunk
wood. Such a method is crucial in the lowland tropics, where few long-term growth mea-
surements have been taken, and where frequently trees lack reliable annual growth rings
because of the lack of winters or highly seasonal dry periods. The new piecewise linear (PL)
growth model, developed in this article, relates logarithmic relative growth to trunk diam-
eter. Having obtained the coefficients from piecewise linear regression, the long-term
age-diameter curve is calculated, i.e., the expected average growth curve of a statistical
population of individual trees. The model is applied to the following five tree species without
annual growth rings from the tropical rainforest in Los Tuxtlas (Veracruz, Mexico): Aspido-
sperma megalocarpon, Cordia alliodora, Dialium guianense, Guarea grandifolia, and Persea
schiedeana. Using the tools of multiple linear regression, the PL model is highly flexible to
derive sigmoid, exponential, and over-exponential growth separately for different diameter
segments. FOR. Scl. 50(2):213-224.

Key Words: Bootstrap, exponential integral, multiple linear regression with fixed intercept,
piecewise linear regression carried out as multiple linear regression.

TROPICS, no previous scientific information on growth and

yield exists, and one has to rely on questionable estimates
from local people. Without cold winters or strong climatic sea-
sonality, trees do not form reliably distinct annual growth rings,
and it is not possible to determine ages by counting growth rings
(Jacoby 1989, Pilar-Ibarra 2000). Consequently, yield projections
exist only for some sites of a few timber species, such as Swietenia
macrophylla King (Mahogany) or Cedrela odorata L. (Spanish
Cedar). This in turn leads to an almost complete lack of species-
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and site-specific cost-benefit analysis, and subsequently to the
virtual nonexistence of truly informed forest management on a
landscapewide scale in most of the tropics.

This article presents a new modeling approach to derive
the long-term age-diameter growth curve from species- and
site-specific data obtained in the short-term (minimum 1
year). To understand conceptually the basic idea, consider
the following hypothetical scenario: A number of different-
aged but genetically identical trees grow under perfectly
homogeneous environmental conditions. Then the old
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(large) trees will tell exactly how the young (small) trees
will grow once they reach the age of the old trees, without
having to wait until the young trees reveal that information
by themselves. This approach is used to develop a regres-
sion model that relates relative growth with diameter. From
this relationship, the long-term age-diameter curve is de-
rived, i.e., the expected average growth curve of a statistical
population of individual trees.

While the presented steps of the method can be carried
out with commercial software, such a procedure would be
tedious. Therefore, the first author wrote the necessary
software, which is available from him via e-mail.

Model Development

Ricker (1998) suggested the following piecewise linear
relationship as the basis of a new tree growth model:

Ln[dD/dAge)/D] = a; + b;* D
{l = 19 2’ T Segment’ DMin,i = D= DMaxJ} (1)

In this equation, D is the trunk diameter, Dy, and
Dypax; the corresponding minimum and maximum diame-
ters for a given segment i, and a; and b; are the segment’s
regression coefficients.

While Equation 1 employs instantaneous diameter incre-
ment (dD/dAge), which technically is the slope of the tan-
gent of the growth function at given diameter, field mea-
surements can only estimate the periodic diameter incre-
ment (here over 1 year). The slope of the measurable annual
increment over a year will be a reasonable estimate for the
slope of the tangent only if one uses the mean diameter
between the diameters corresponding to the first and last
measurement on a given tree [Dyean = DPrnitial T Prinal —
DInitial)/2] 0

Accurate estimation is important to apply the model
correctly: The trunk diameter increment should be calcu-
lated from measurement of the perimeter over bark, above
buttresses at a marked height (D = perimeter/). The height
should ideally be the same for all trees (at breast height),
although deviations are not severe given that diameters and
their increments do not vary strongly with tree height vari-
ation of some decimeters. The bark should be cleaned from
moss, and lianas separated from the trunk. On large trees,
one has to mark several points around the perimeter (a tree
of 1 m diameter has a perimeter of 3.14 m!). Depending on
the species’ bark, one can use paint, but the bark of some
species is peeling away. More reliable are aluminum tree
nails. It may be useful to measure the perimeter parallel on
two to three heights (20-50 cm apart) to get two to three
comparable diameter increments after a year (also if marks
disappear over the year). After the second measurement one
can then discard measurements that are obviously “off,” or
take the average of the two to three increments.

Taking the second measurement is best after exactly a
year, because it represents one complete growth cycle, with
all dry and wet seasons. Deviation in measurement time
from a year can be interpolated linearly to 365 days. De-
pending on the trees’ growth phases over the year, however,
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the higher the deviation, the more inaccurate the annual
increment estimate may become. For taking the second
measurement, one should have the data from the first mea-
surement at hand in the field; with very few exceptions of
dehydration in dry forests, a tree will never decrease in
diameter increment. Therefore, a second perimeter measure-
ment that is smaller than the first measurement a year ago is
an error measurement, and should be verified immediately
in the field. Also one should have a rough idea of the
maximum possible diameter increment of the species in the
region (e.g., by asking local people). Some trees may have
to be discarded after the year from the study because they
died, were cut, or the bark got damaged, but selecting
initially 100 trees of a wide diameter range, randomly from
the chosen habitat, represents a good statistical number.

Returning to the mathematical model, Equation 1 says in
words that, on a logarithmic scale, instantaneous relative
growth of the trunk diameter is linearly related to the diameter
itself. To model this function over the whole diameter range of
a tree, several piecewise segments have to be used, as shown
graphically for five species in Figures 1-3 on the left. Why
does this function represent a good tree growth model?

1.  With increasing age or diameter, relative growth in
plants [(dD/dAge)/D] goes always from high values (fre-
quently over 100%) to low values (close to zero). Tree
seedlings with diameters of a few millimeters grow a few
millimeters per year, when they establish themselves on
a site, while adult trees of many decimeters diameter still
grow only millimeters (or centimeters at best). Therefore,
any function that models relative growth of tree diameter
will slope downwards. A combination of highly flexible
piecewise linear segments is one possibility to model the
downward path.

2. Using linear segments as interpolating splines has
great advantages: The whole set of tools from multiple
linear regression techniques becomes available.

3. Taking the logarithm of relative growth makes the
data homoscedastic (small diameters present larger
variance of relative growth than do large diameters)
and avoids an impossible trajectory into negative rel-
ative growth.

Next we turn to the statistical aspects of how to carry out
the piecewise linear regression.

Piecewise Linear Regression with the
PL Model

Before the age-diameter curve can be derived, piecewise
linear regression has to be carried out to model the relation-
ship between diameter and logarithmic relative growth. The
regression model in the case of three segments is the
following:

Ln(RG) = a -+ b] 'D fOr DMin SDSKDI
Ln(RG) = a, + b, D for KD, = D < KD,

Ln(RG) = as + by D for KD, <D <Dy,,  (2)
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Figure 1. Piecewise linear regression with growth data from Aspidosperma megalocarpon and Cordia
alliodora from the tropical rainforest in Los Tuxtlas (Veracruz, Mexico). For each segment, the
resulting regression equation is given in the graphs on the left (D = diameter). Residuals are normally
distributed, homoscedastic, and serially independent. For the graphs on the right, the corresponding
age-diameter curves were derived with Equation 4. The kink ages and kink diameters from the
piecewise linear regressions are given. The calibrating point is 1 cm at 0 years for both species. The
kinks are hardly recognizable in the age-diameter curves. Note the different scales for the species’

growth curves.

with constraints: a, = a; + KD, * (b; — b,)

a;=a, + KD, (b, — b,)
+ KDz(bz - b3)

In this system of equations, RG is relative growth, D is the
trunk diameter, Dyy;,, and Dyy,, the minimum and maximum
measured diameters of the data set, and KD, and KD, are
the two kink diameters (also known as “join points,” “break-
points,” or “knots”). The two constraints fix a, and a5, once
the kink diameters are chosen; otherwise the piecewise
linear segments would not connect at the kink diameters.
Piecewise linear regression can be carried out with non-
linear regression algorithms. Equation 2 would be converted
to the regression model Ln(RG) = a, + b, * Dy, = D <
KD,) + b, * [(KD; = D < KD,) — KD,] + bs - [(KD, =
D = Dy,,) — KD,], which can be specified in nonlinear
regression software, such as SAS or SYSTAT. There is,

however, a serious disadvantages of the nonlinear regres-
sion approach: Depending on the data and the starting
values, the iterative nonlinear regression algorithms may
fail to find the regression coefficients, or present suboptimal
results. In contrast, in linear regression the computation is
straightforward (noniterative). Therefore we present in Ap-
pendix 1 a method to carry out piecewise linear regression
as multiple linear regression, with each segment taken as a
separate dimension.

The parameters a,, a,, and a5 represent the Y-intercepts
of the three piecewise linear segments. In particular, a,
corresponds to the logarithmic relative growth rate infini-
tesimally close to a diameter of D = 0 (see Equation 1). A
vertical shift up or downward of the regression line changes
the relative growth rate at each point of the segment in a
multiplicative way, given the logarithmic Y-axis. For exam-
ple, an upward shift of Ln(2) = 0.693 means that relative
growth at each diameter becomes twice its former value.
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Figure 2. Piecewise linear regression with growth data from Dialium guianense and Persea schie-
deana (as in Figure 1). For Persea schiedeana, the Y-intercept was not fixed at zero because there were

many data points for small diameters.

Therefore, the parameter a determines the growth rates at
different diameters, and changing a,; with fixed b, affects the
different growth rates over the whole diameter range of a
given segment in a uniform way.

Depending on the data, the parameter a, can take on any
value: A test to examine if a, is significantly different from
zero is of no particular interest, as it would mean only that
initial relative growth could be 100% [Ln(100%) + b -0 =
0 in Equation 1]. If the initial relative growth [i.e., Exp(a,)]
is known from a seedling experiment or supposed to take on
a certain value, then the multiple linear regression should be
carried out with a fixed Y-intercept. Appendix 2 derives the
statistical formulas to calculate the regression coefficients in
that case (as used in four cases in Figures 1-3 on the left).

The number of segments may vary, depending on the
diameter range considered and the trees’ growth history
(two to three segments in the examples of this article). There
are two, each other opposing criteria to select the number of
segments: On the one hand, more segments will lead to a
better fit of the piecewise linear regression line to the data
cloud. On the other hand, the difference between the b-
slopes of any two segments has to be statistically significant
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to support objectively the inclusion of the intermediate kink.
If the slopes of two neighboring segments are not signifi-
cantly different, the kink should be eliminated and the
regression should be carried out with one segment less.
Therefore, after a visual inspection of the graphed data, one
will start with the highest reasonable number of segments
(say three), and reduce the number of segments stepwise,
until all pairwise tests of differences between b-slopes are
statistically significant, or only one segment is left.

Note in this context that the usual significance test in
regression analysis to examine b, = 0 is irrelevant here.
That would only mean to test whether the growth could be
exponential, as b, = 0 implies exponential growth (see
Equation 5 below), but not whether the growth curve should
be calculated with one segment less.

The comparison of the slopes b, with b,, b; with b5, and
b, with b; (in the case of three segments) is carried
out with a r-test. The formula fg,p,pe = |by = bol/[sy * (811 +

, — 2 - g1, given by Sokal and Rohlf (1995) to
compare slopes in multiple linear regression, involves the
Gaussian multipliers (called g) that have to be provided by
a computer program. The #-value has (n — k — 1) degrees of
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Figure 3. Piecewise linear regression with growth data from Guarea grandifolia (as in Figure 1). The
bottom graphs show in addition the regression curves and age-diameter curves that correspond to
the 95% confidence interval for the regression’s Y-mean. Three statistical outliers are indicated with

squares.

freedom for a free Y-intercept and (n — k) degrees of free-
dom for a fixed Y-intercept, where n is the number of data
points and k the number of piecewise linear segments. These
are the usual number of degrees of freedom as employed in
multiple linear regression (Sokal and Rohlf 1995), where in
our case each piecewise linear segment corresponds to an
independent X-variable (see Appendix 1).

Derivation of the Age-Diameter Function

Having completed the piecewise linear regression, the
objective is to convert the function between diameter and
relative growth (Figures 1-3, left) into a mathematically
equivalent function between age and diameter (Figures 1-3,
right). In this section, a single segment will be considered,
so that we can use a and b instead of g; and b,.

One can transform Equation 1 into the following equa-
tion of instantaneous increment as a function of diameter:

dD/dAge = D - Exp(a + b+ D) (3)

Next, Equation 3 is converted into dAge /dD = Exp(—a—b - D)/D.
Integrating both sides of this equation with respect to D, and
usbD, at Age, being any point on the growth curve, yields the

function Age, = Age; + Exp(—a) [ Dlm[Exp(—b - D)/D)dD. De-
fining the exponential integral Ei(—b - D) as in Appendix 3 (A3.1),
and applying Equation A3.2 (with ¢ = —b and y = D), one gets
Age, as s function of D,:

Age, = Age, + Exp(—a) - [Ei(—b-D,) — Ei(—b*D,)]
4)

In Equation 4, both diameters D, and D, have to be larger
than zero, different from the regression of logarithmic
growth as a function of diameter where the diameter can
numerically be zero. The underlying reason is that growth is
modeled as a multiplicative process, and for an absolute
growth curve there must be some initial diameter that can be
proportionally increased.

For b 0, [p/P2[Exp(=b - D,)/ID]dD is simply
Ln(D,/D,). For b # 0, the exponential integral Ei(-b - D)
converts into an infinite polynomial (Jeffrey 1995) and
therefore has to be approximated with an acceptable degree
of accuracy. Appendix 3 provides a new and easy-to-use
method to calculate the exponential integral Ei(x) relatively
quickly, for example with a spreadsheet program.
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With Equation 4, one can calculate Age, corresponding
to the diameter D,, given Age,, D;, a, and b. However,
usually in a growth curve one wishes to determine a diam-
eter D, for given Age,, not the other way around. The easy
case is for b = 0, where Equation 4 converts into an
exponential growth function:

D, = DyExp[(Age, — Age)) - Exp(a) {forb =0} (5)

For b not being zero, there are two mathematical options.
The mathematically simple way consists of employing a
converging trial-and-error algorithm that determines D, in
Equation 4 in ever-smaller steps for given Age,. The more
sophisticated way is to take Equation 3 and apply a Runge-
Kutta method for solving ordinary differential equations
(Gerald and Wheatley 1994).

Depending on the shape parameter b, the piecewise lin-
ear (PL) model derives sigmoid, exponential, or over-expo-
nential growth of the age-diameter curve (but note that it
cannot model negative growth). With negative b, D,(Age,)
is a sigmoid function with an accelerating beginning and a
decelerating end. The resulting formula for the turning point
diameter (TPD) between the two parts is especially simple:

TPD = —1/b {for b <0} (6)

It is obtained by taking the second derivative of Equation 4
with respect to D,, setting the derivative equal to zero, and
solving for D,. The corresponding turning point age (7PA)
is:

TPA = Age, + Exp(-a) - [Ei(1) — Ei(-b- D,)]
{forb< 0} (7)

Interestingly, the turning point diameter is dependent exclu-
sively on the slope of the segment’s regression line in the
relationship of logarithmic relative growth over diameter.
All other parameters (a, Age;, D,) influence the turning
point age (i.e., the time it takes to reach the turning point
diameter) but not the turning point diameter itself.

With b = 0, the model simplifies to the exponential
curve given already with Equation 5. Positive b results in an
over-exponential age-diameter curve with ever more in-
creasing relative growth rate; Equation 1 makes this
obvious.

Equations 4, 5, and 7, respectively, require one age-di-
ameter point D, at Age,. This point calibrates the position of
the growth curve D,(Age,). In Equation 4, one can move the
age-diameter curve freely to the left or right by manipulat-
ing Age, at given a, b, and D, (mathematically, Age, can
also be negative). Similarly, at given a, b, and Age, one can
manipulate D,. If a change in Age, is opposite to a change
in Exp(—a) * Ei(-b - D,), then the age-diameter curve re-
mains exactly in the same position.

In the next section, we will apply the PL model to
empirical field data.

Model Application

Figures 1-3 show the application of the PL. model with
growth data from five tree species of the Los Tuxtlas
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rainforest (Veracruz, Mexico). Site descriptions of this trop-
ical rainforest can be found in Bongers et al. (1988) and
Ibarra-Manriquez et al. (1997). The five species are Aspi-
dosperma megalocarpon Miill. Arg. (common name “naza-
reno,” plant family Apocynaceae), Cordia alliodora (Ruiz
et Pav.) Oken (“stchil acahualero,” Boraginaceae), Dialium
guianense (Aubl.) Sandwith (“paque,” Caesalpiniaceae),
Guarea grandifolia (“sabino,” Meliaceae), and Persea
schiedeana Nees (“chinine,” Lauraceae). These tree species
are well-known from a floristic inventory of the Mexican
Autonomous National University’s (UNAM) 644-ha re-
serve (Ibarra-Manriquez and Sinaca 1995, 1996a, 1996b).
Voucher specimens for each species are deposited in UNAM’s
field station herbarium.

Each data point in Figures 1-3 on the left presents a
single tree, measured twice between Mar. 3, 1997 and Apr.
26, 1999 (depending on the species and individual tree over
a period of 345-633 days, but increments were linearly
interpolated to 365 days). Trees were selected to come from
a wide range of trunk diameters, within an area of 575 ha of
primary and secondary forest, as well as cattle pastures.
Initial and final trunk diameters were determined approxi-
mately at breast height (or above buttresses) from their
perimeters, measured at a marked height with a measuring
tape.

Figures 1-3 show on the left the resulting regression line.
Of the five species, only P. schiedeana was modeled with a
free Y-intercept a,, given the existence of numerous data
points with small diameters. In the other cases, initial rela-
tive growth was assumed to be 100% (which makes the
origin in the graphs to be the Y-intercept). A. megalocarpon,
C. alliodora, and D. guianense present two piecewise linear
segments, while G. grandifolia and P. schiedeana present
three segments.

Applying Equation 4 for the five species, the resulting
age-diameter curves are shown in Figures 1-3 on the right.
The calibrating point D, at Age, is 1 cm at O years as a
possible but arbitrary point for comparing the age-diameter
curves of different species. There are obvious differences in
growth rate and shape between the species. One way to
compare growth rates is calculating the expected average
annual increment over the first 30 years of growth. C.
alliodora has an estimated average annual diameter incre-
ment of 1.75 cm during the first 30 years, D. guianense 0.72
cm (41% of C. alliodora's increment), A. megalocarpon
0.50 cm (29%), G. grandifolia 0.42 cm (24%), and P.
schiedeana 0.24 cm (14%). Its relatively fast growth makes
C. alliodora a popular timber species in plantations: The
largest encountered tree of 62 cm trunk diameter was esti-
mated to be only 36 years old. On the other hand, P.
schiedeana according to this analysis is a slowly growing
tree species in Los Tuxtlas, requiring 413 years to reach 100
cm trunk diameter at breast height. For this comparison
between species, one has to take into account that the
sampled trees of the tree species were not found on the same
site, so that different site conditions between species may
also play in.

There are also differences in the growth curves’ shape
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between species. A. megalocarpon has a clearly pronounced
sigmoid shape of the age-diameter curve for the second
segment (turning point diameter 7PD, = —1/-0.037742 =
26.5 cm). The age-diameter curve for C. alliodora is more
linear (TPD, = 34.0 cm). D. guianense has a pronounced
sigmoid age-diameter curve for the first segment (TPD, =
4.6 cm), but a relatively linear one for the second segment
(TPD, = 64.5 cm). P. schiedeana was modeled with three
segments, which are notably difficult to distinguish in the
age-diameter curve (KD, = 7.0 cm, KD, = 27.9 cm).
Finally, G. grandifolia is interesting because it presents a
positive slope in its third regression segment (b; =
+0.012419 cm™").

To be useful, the PL model should be able to provide a
measure of reliability of the growth projections. Figure 3
(bottom) shows for the data of G. grandifolia the regression
curves and resulting age-diameter curves that correspond to
the 95% confidence interval of the mean logarithmic rela-
tive growth. A simultaneous move up or down of all piece-
wise linear segments together is considered. This confi-
dence interval is based on the regression’s standard error of
the sampled Y-mean, i.e., the average logarithmic relative
growth. The standard error of the sampled Y-mean is
(s*/n)*3. The unexplained variance s° is [(1 — R?) - =y*] /(n —
k— 1), where R? is the coefficient of multiple determination of
the piecewise linear regression and Zy” the total sum of
squares. The confidence intervals are then calculated with a
t-distribution (for details see Sokal and Rohlf 1995).

The 95% confidence interval of the mean logarithmic
relative growth reflects the overall uncertainty about the
growth rate and implies that all a; (of i segments) have to be
moved up or down together by the same interval. Calculat-
ing confidence curves in this way is based on four
assumptions:

1. The sampled Y-mean is normally distributed, which is
automatically true if the residuals are normally distrib-
uted. Note that given the central limit theorem, de-
pending on the number of data points, Y-mean ap-
proaches a normal distribution even if the residuals are
not normally distributed (Sokal and Rohlf 1990).

2.  The variance of the residuals is homogeneous along
the regression line and the residuals are serially inde-
pendent. This assures a homogeneous uncertainty over
the whole diameter range (see Figure 3, bottom left).

3.  There is no uncertainty about the calibrating point D,
at Age,.

4.  There is no uncertainty about the slopes b; of the i
segments. This, in accordance with Equation 6, im-
plies that there is no doubt about the turning point
diameters.

Normality of the residuals was analyzed with the
Kolmogorov-Smirnov test, homoscedasticity with Bartlett's
test, and serial independence according to von Neumann
(Sokal and Rohlf 1995). Points 1 and 2 are fullfilled in the
G. grandifolia example of Figure 3. This allows also to
detect statistical outliers by calculating standardized resid-
uals and comparing them against the corresponding z-value
(Sokal and Rohlf 1995). Three such outliers are indicated in
Figure 3 (bottom left) with squares.

To find confidence intervals for the slopes of each seg-
ment, bootstrapping was carried out for G. grandifolia (see
Chernick 1999). The original statistical sample population
in Figure 3 (left) was considered as a pseudoparametric
population, from which 1,000 sample populations of the
same size (n = 88) were randomly derived. For each
pseudosample population, the PL model was applied (a; =
0 always), and 1,000 combinations of b,, KD, a,, b,, KD,
as, and b5 derived. Table 1 gives the following information
for each of the seven variables: (1) the original value of each
parameter as given in Figure 3 (top), (2) the 26th entry after
ordering the 1,000 data points (separately for each variable)
from the smallest to largest value as the lower 95% confi-
dence limits, (3) the corresponding percent deviation from
the original value, (4) the 975th entry as the upper 95%
confidence limit, and (5) again the corresponding percent
deviation from the original value.

The percent deviations from the original value of six of
the seven variables in Table 1 range from -231.6% to
168.4%. Only the slope of the second segment b, deviates
by a much higher percentage into the positive range
(1,675.8%), but this segment is also constrained to connect
the first and the second segment.

The most interesting aspect in this example is that the
95% confidence interval of the slope of the third segment
(b; = +0.012419 cm™' in Figure 3, bottom left) ranges
from a negative value (—0.016345), corresponding to sig-
moid growth, to a positive value (+0.033338), correspond-
ing to over-exponential growth. While we do know that
over-exponential age-diameter curves can exist at low
growth rates in trees (unpublished data from a tree with
annual growth rings of Pinus teocote Schiede ex Schltdl. &

Table 1. Bootstrap parameters of the regression coefficients for Guarea grandifolia.”

By KD, a, b, KD, as by
Original (Figure 3) —0.42885 cm ™! 8.4 cm —3.3467 —0.030275 cm ™! 427 cm =5:1690 0.012419 cm™!
Lower 95% CL —0.49922 cm ™! 76cm  —9.0080 —0.089081 cm ™' 97cm  —6.3538 —0.016345 cm™'
Deviation —16.4% —95% —169.2% —194.2% —71.3% —22.9% —231.6%
Upper 95% CL —0.32413 cm ™! 11.6cm  —2.4015 0.477068 cm ! 459 cm  —3.5659 0.033338 cm ™!
Deviation 24.4% 38.1% 28.2% 1675.8% 7.5% 31.0% 168.4%

¢ Notes: 1,000 bootstrap iterations, fixed a, = 0, KD = kink diameter, CL = confidence limit, Deviation = percent deviation from the original estimates

given in Figure 3 (top).
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Cham.), in this G. grandifolia data there remains uncer-
tainty about it.

Discussion

Modeling tree growth is fundamental to forest science
and has been the subject of numerous articles (see summa-
ries in Zeide 1993, Liu and Ashton 1995, Vanclay 1994,
Vanclay 1995). Our article focuses on an individual-tree
model for trunk diameter growth, i.e., the expected average
growth curve of a statistical population of individual trees.
The trunk diameter has the advantage that annual incre-
ments can be measured relatively accurately, and it is pos-
sible to relate other variables such as trunk volume allo-
metrically to the trunk diameter.

The simplest approach to diameter growth modeling
consists of choosing a growth function for nonlinear regres-
sion, with empirical data of age-diameter points from trees
of a given species and site. The result of this nonlinear
regression is an average growth path of the long-term age-
diameter curve over the past decades. The most widely used
growth model in forestry has been the von-Bertalanffy-
Richards-Chapman (BRC) model, often called the
Chapman-Richards model (Bredenkamp and Gregoire
1988, Zeide 1993). It was introduced to forestry by Pienaar
and Turnbull (1973) and has the basic functional form D =
Dypax * [1 — Exp(—a - Age)]®, where D is the diameter and a,
b, and D,,,, are regression coefficients.

In the lowland tropics, however, this simplest approach
is usually impossible, because without strong climatic sea-
sonality, tree ages generally cannot be determined from
annual growth rings in the trunk (Jacoby 1989, Pilar-Ibarra
2000). The only alternatives are expensive carbon dating
(Chambers et al. 1998) or indirect methods, where ages are
inferred from other variables such as annual increment (see
Martinez-Ramos and Alvarez-Buylla 1998). In this article,
we contribute a novel indirect method based on annual trunk
increments. In contrast to the few existing indirect ap-
proaches, most notably the simulation approach by Lieber-
man and Lieberman (1985), the new PL model is apparently
the first one that takes advantage of linear regression with
all its tools in an indirect approach to derive the long-term
age-diameter curve from short-term measurements.

The approach to convert the relationship between diam-
eter and logarithmic relative growth mathematically into the
relationship between age and diameter is not limited exclu-
sively to the PL model. Ricker et al. (1999) convert the
above-mentioned equation of the BRC model into the cor-
responding equation Ln(RG) = Ln{a * b * [(D/Dy,,) """ -
1]} and find the three coefficients a, b, and D,,,, via
nonlinear regression. Putting the coefficients back into the
original equation provides the projected long-term age-di-
ameter curve. The same approach is possible for some other
nonlinear models. All these nonlinear models, however,
have severe drawbacks in comparison with the PL model:

1.  The PL model with an a priori undetermined number
of regression coefficients is more flexible and can
adapt better to different types of growth curves than
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the BRC model and nonlinear models with three re-
gression coefficients. In contrast to the BRC model,
the PL model is able to model sigmoid (b < 0),
exponential (b = 0), and over-exponential growth
(b > 0), as well as combinations between these growth
types, within a tree’s overall growth curve.

2. For the PL model, the parameters have a much clearer
interpretation than for the BRC and other nonlinear
models: The Y-intercepts of the segments (a;) deter-
mine the relative growth rates at different diameters,
the slopes are responsible for the turning point diam-
eter (TPD = -1/b,), and the calibrating point (D, at
Age,) determines the absolute position of the growth
curve.

3. In nonlinear regression modeling, increasing the num-
ber of regression coefficients (at given number of
explaining variables, here diameter) causes eventually
“endless” iterative searches because of overfitting. In
contrast, the PL model has a straightforward criterion
in case of overfitting: two neighboring segments will
have slopes that are not significantly different and one
of the two segments should be eliminated.

4.  In linear regression, ordinary least squares (OLS) es-
timators are automatically the “Best Linear Unbiased
Estimators” (BLUE), provided that the assumptions of
homoscedasticity, independence, and zero mean of the
residual errors are met. If in addition the data are
normally distributed, then OLS also provide minimum
variance unbiased estimation (MVUA) among all lin-
ear and nonlinear unbiased estimators (Maddala
1992).

5. Using the tools of multiple linear regression, the PL
model can include a theoretically unlimited number of
explanatory genetic or environmental variables, such
as leaf nutrients or competition indices, and the long-
term growth curve can be derived as a function of
these variables. This application will be the topic of
future research.

The basic idea of avoiding the necessity of taking mea-
surements over the lifetime of a tree without annual growth
rings is that existing large trees can tell us how currently
small trees will grow on average in the future, when the
increments measured on the large trees are representative
for the increments of the small trees once they reach that
large size. It implies that different-sized trees are selected at
random within a given environment. For example, it is
assumed that large trees on the average are not from a
superior site, when small trees on the average are from an
inferior site.

Furthermore, the increments measured in the short-term
are assumed to be representative for the long-term. Impor-
tantly, the climate of the measurement year(s) has to be
representative of the long-term average climate. If temper-
ature and precipitation during the measurement year(s) are
not representative for the long-term, growth projection can
be strongly biased. For the data of the five species in Figures



1-3, the 1952-1998 climate was analyzed from the Coyame
meteorological station, approximately 15 km air-distance
away from the study site. The monthly mean maximum
daily temperature was on average 28.0° C, and the average
annual total precipitation was 4,543 mm. For the 2 years
from 1 Apr. 1997 to 31 Mar. 1999, the corresponding values
were 27.2° C and 3,287 mm. Therefore, the climate during
the measurement period was slightly cooler (3%) and con-
siderably drier (28%) than the “long-term” climate
1952—-1998. This probably causes the derived long-term
growth curves in Figures 1-3 to underestimate the true
growth curves, as higher temperature and more precipitation
are expected to increase the growth rate.

Growth projections are fundamental to any forest man-
agement plan, as well as to cost-benefit analysis. The tropics
contain a large diversity of tree species in distinct environ-
ments: We hope that this new modeling tool for projecting
long-term tree growth will contribute to overcome the wide-
spread lack of informed forest management.
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APPENDIX 1: Piecewise Linear Regression in
Three Segments, Carried Out as Multiple
Linear Regression

Piecewise linear regression can be calculated with the
tool of multiple linear regression, with each segment taken
as a distinct dimension. For example in a three-dimensional
space, in multiple linear regression with two explanatory
variables, the join point corresponds to the corner of the
rectangular plane that is adjusted to the data cloud.

The regression model for three segments in this approach
is Ln(RG) = do + bl : DFirst_segment G b2 3 DSecond_segmem +
b3 * Drpirg_segment (S€€ Sokal and Rohlf 1995 for the math-
ematical procedures). The two kink diameters have to be
chosen before preparing the input matrix. The data input, as
applicable in any commercial multiple linear regression
program, has to be carried out as follows, when the data are
ordered according to increasing diameter:

1. segment 2. segment 3. segment Y-variable

D, KD, KD, Ln(RG,)

D, KD, KD, Ln(RG,)
KD, KD, o in

D, KD, KD, Ln(RG,,)

KD, Dy KD, Ln(RGy,+,)

KD, Dy KD, Ln(RG),..,)
ks KD, e

KD, Dy, ; KD, Ln(RG,. ;)

KD, KD, Dyijiq Ln(RGy 4+ 1)

KD, KD, Dyyjin Ln(RGy+j+>)

KD, KD, 1

The abbreviations mean: D = trunk diameter, KD = kink
diameter (emphasized in boldface here), RG = annual rel-
ative growth, 2 = the hth data point, and j = the jth data
point. The data entry scheme assures that any two segments
join exactly at the chosen kink diameters. To understand
this, think of adjusting a plane to the data in the case of two
segments: The kink is one corner of that plane.

The first three columns correspond to the diameter data
of the three segments. Given that the data are ordered
according to increasing diameter, in the first column (1.
segment”) the data for the measured diameters (D, to D))
are entered up to the first kink diameter (KD,). For the rest
of the column, the first kink diameter is repeated. In the
second column (2. segment”), again the first kink diameter
is repeated up to that row, where in the first column the last
diameter before the first kink diameter was entered (D,,).
The following row in the second column contains the first
diameter that is larger than the first kink diameter (D,,. ).
The subsequent diameters are entered in this column up to
the last diameter that is smaller than the second kink diam-
eter (D, ;). For the rest of the second column, the second
kink diameter is repeated. The third column (*3. segment”)
again repeats the second kink diameter up to the row where
in the second column the last diameter before the second
kink diameter was entered (D) ;). Then, the remaining
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diameters are entered in the third column. The fourth col-
umn contains the logarithmic relative growth data that cor-
respond to the diameters given in any of the first three
columns. Note that while here the data are ordered accord-
ing to increasing diameter, this does not have to be so, as
long as the relationships within each row are respected.

The resulting Y-intercept a,, of the multiple linear regres-
sion is not the Y-intercept a, of the first segment (as defined
in Equation 2). The three Y-intercepts, corresponding to the
three segments, have to be calculated with the equation
system Al.1. This calculation reconverts the segments from
a four-dimensional space back to the two-dimensional
space:

a1=a0+b2'KD1+b3'KD2
a2=a0+b1'KD1+b3'KD2

a3:a0+bl'KDl+b2'KDz (All)

For significance analyses, there are two less degrees of
freedom compared to simple linear regression (n — 4 instead
of n — 2 in the case of three segments). The four degrees of
freedom that are rested correspond to the estimation of a,
b,, b,, and b, from the data. Note in this approach that we
do not rest degrees of freedom neither for the determination
of the kink diameters KD, and KD, nor for the determina-
tion of the Y-intercepts a,, a, and a5. The reason is that these
parameters are not estimated statistically from the data: The
kink diameters are predetermined in the data entry scheme,
and the Y-intercepts are calculated with the system of Equa-
tions Al.1 from the other parameters.

To find the most likely growth path, the kink diameters
KD, and KD, have to be optimized so as to minimize the
unexplained sum of squares. This can be achieved by an
iterative search-algorithm that tries data input matrices with
combinations of two kink diameters in ever-smaller steps
(jumping forth and back over the final kink diameters),
always starting again with those new kink diameters that
result in a lower unexplained sum of squares.

APPENDIX 2: Multiple Linear Regression
with the PL Model and Fixed Initial Relative
Growth for Three Segments

The Y-intercept a, is the logarithm of the initial relative
growth. Fixing a, at a desired value implies that the slope of
the first segment b, is not free, but rather has to be found as
a function of a,. This appendix shows the derivation of the
formulas that are needed in a computer algorithm to calcu-
late piecewise linear regression for three segments with
fixed Y-intercept.

The usual Y-intercept a, is calculated from the averages
of the data entry columns (X; 4,,) as follows:

ag = YArg - bl : Xl,Avg e b2 X XZ,A\'g e b3 : XB.Avg (Azl)

The actual Y-intercept of the first segment in the PL model,
according to Equation Al.1, is:

a, :a0+b2'KD] +b3'KD2 (A22)



Replacing g, in Equation A2.2 with A2.1:
a, = YAvg - bl 'Xl.Avg - bZ'XZ,Avg - b3 .X3,Avg
+ b, KD, + b;-KD, (A2.3)

Bringing b, in Equation A2.3 on one side, the slope of the
first segment can be calculated as a function of all remain-
ing variables:

b, = (YAvg - al)/Xl,Avg — by (XZ,Avg - KDI)/XI,Avg
— b3 (X3,Avg - KDZ)/X],Avg (A2.4)

To solve in general the multiple linear regression with
three segments in the PL model, one starts off with the
following system of equations of sums of squares and sums
of products (Sokal and Rohlf 1995):

by - Z(xlz) + by 2(x1°xy) + by Z(x; 0 x3) = 2(x;°y)
by Z(x,°x) + by* Z(szz) + b3 2(x;0 x3) = 2(x, ')’)

by 2(x;x)) + by Z(xy° xp)

+ by 2(x; x3) = 2(x, )’) (A2.5)

Without a fixed Y-intercept, and with given sums-of-squares
and sums-of-products, the matrix is solved for b, b,, and b5.
With one or two segments, the procedure is the same, as the
sums corresponding to b, and b5 are simply set to zero.

Replacing in the system of Equations A2.5 the variable
b, with the function given in A2.4 and applying some
calculus provides the final matrix for multiple linear regres-
sion with fixed Y-intercept a;:

by [Z(x;° x3) — Z(x,%) * (Xp, 40 — KD )X, av5)
+ b~ [Z(x; *x3) — S(x:) * (X3, 405 — KD)IX; 03]
=Z(x10y) = (%" * Yavg — @)/ X1 a0
by [Z(x%) = Z(x;* x2) * Xasavg — KD1)/ X ,p0)
+ by [Z(xy0 x3) = Z(x;1° x2) * (X300 — KD2)/X11a0,]
=2(x0y) — 2(x1° %) * Yavg — a)/X1,n0, (A2.6)

This matrix of two equations with two unknowns is solved
for b, and b5, using a method for solving systems of simul-
taneous linear equations (most notably Gaussian elimina-
tion, see for example Gerald and Wheatley 1994). Subse-
quently, b, is calculated with Equation A2.4. The degrees of
freedom are augmented by one, compared to the case where
initial relative growth is found by the regression from the
data, resulting in n — 3 in the case of three segments
(corresponding to finding b,, b,, and b5 from the data).

APPENDIX 3: Numerical Evaluation of the
Exponential Integral Ei(x)

The exponential integral Ei(x) is defined as follows (van
de Laan and Temme 1984):

Forx <0: Ei(x): = [_." [Exp(y)|/yldy (A3.1)

Forx > 0: Ei(x): = lim, | of[_..” [Exp(y)|/y]dy

+ [ & [Exp(y)llyldy}

For y = 0 the function f(y) = Exp(y)|/y is singular, and
Ei(0) = —o. Therefore, for x > 0 one uses the Cauchy
principal value to define Ei(x). In this way, the to-be-
integrated interval can include zero (for example:
[, Exp(y)lyldy = Ei(3) — Ei(-2) = 9.983).

For [ “*[Exp(c - y)|/y]dy, with c being a real number and
applying the calculus rule of “change of variables” (c *y =
Z), we obtain:

S [Exp(c - y)|/yldy = Ei(c* x,) — Ei(c* x,)
{for x, > 0,x, >0} (A3.2)

All computational methods calculate the exponential in-
tegral as an approximation with a desired degree of accu-
racy (Hastings et al. 1955, Harris 1957, Miller and Hurst
1958, Gautschi and Cahill 1965, Cody and Thacher 1969,
van der Laan and Temme 1984, Jeffrey 1995). Here we
present a new method of numerical evaluation of Ei(x) that
works particularly well for the new growth model of this
article, because there are no constraints for choosing x, the
desired accuracy can be chosen freely, and it can be calcu-
lated even with a spreadsheet program.

Ei(x) can be expressed as a Taylor expansion (an infi-
nite polynomial), where Euler's constant y =
0.577,215,664,901,533 appears (van de Laan and Temme
1984, Jeffrey 1995). The addition of <y, however, is irrele-
vant when calculating the integral between two integration
bounds, because it cancels out. With n being any positive
integer number:

Ei(x) =y + La|x| + xY/(1!-1) + ... + x"/(n! - n)
+... {x#0} (A3.3)

Equation A3.3 can be reformulated when truncating the
polynomial so that only i polynomial terms remain (where i
is a positive integer number):

Ei(x) =y + Ln|x| + x'/(1! - 1) + ... + XY@ - i)
+ Remainder(x,i) (A3.4)

By deriving a bound formula for the Remainder(x,i), a
criterion is provided for the number of terms i that have to
be added for a desired accuracy of the numerical result:

Remainder(x,i) = xY[(i + 1) -G+ 1)]+...
+ XU G+ 1 +n)! - ((+1+n)]+... (A3.5)
Remainder(x,i) < {xY[(i+ D! @G+ 1)]}
A1+ X/ +2)+x[G+3) (i +2)]

+. .+ xG+H 1L+ )G+ D]+
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Applying the formula for a geometric series:
> [x i+ 2)1 = [ — x/(G + 2)]
{for |x|/(i +2) < 1}

The latter condition is equivalent to i > ( |x| — 2) polyno-
mial terms.

Remainder(x,i) < {x*'[Gi+ 1)!- (i + 1]}
I[1—x/(i +2)]
Remainder(x,i) < x™'/{i!- (i + 1)?
[1=x/(i +2)]} (A3.6)

Inequality A3.6 works for positive as well as negative x.
Note that in the case of negative x, the remainder is positive
for uneven i and negative for even i. As an example, take
x = 5.2 and a desired accuracy of nine decimals. The
smallest possible i > |x| — 2 is four polynomial terms, but
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the remainder as calculated with Equation A3.6 is still large
(between —3.4 and 0). With increasing i, the remainder
converges toward zero. With i = 25 polynomial terms, the
exponential integral is calculated with Equation A.3.2 as
Ei(-52) ~ vy + Ln|-52| + (524! - 1) + ... +
(-5.2/(25! - 25) = -0.000,908,621,9, and the re-
mainder is between 0 and 3 - 107'°. Consequently the true
value of FEi(-5.2) is between -0.000,908,621,9 and
-0.000,908,621,6 (—0.000,908,621,9 + 3 - 107'%). Round-
ing one decimal results for both cases in —0.000,908,622,
i.e., the desired accuracy of nine decimals has been reached.

This method works for any |x| # 0. For very large x,
however, the condition i > x — 2 makes the method slow
or impractical. For negative values of x, Ei(x) approaches
zero. When the method is employed with the accuracy of a
spreadsheet program, one may encounter rounding error
problems for x < —15, in which case one can set Ei(x) =~ 0.
These problems, however, are irrelevant for data from real-
world trees in our growth model.



